Seminar

On

Production of Beta-amylase by *Trametes* species on Some Agricultural wastes.

By

DR. OLUWAFEMI, YINKA DORIS

INTRODUCTION

- Trametes species is a wild edible mushroom genus of fungi in the family of polyporaceae (Ofodile, 2006).
- They are group of tough, woody, leathery and poroid mushroom but typically lacking a distinct stalk (Zjawiony, 2004).
- Some polypore have been found to be useful as enzyme production, much has not been reported on *Trametes* species.

Plate 1: Photograph of fruiting body of *Trametes* species

Methodology:

- The mushrooms (*Trametes* species) used were collected from forest in Ondo, Ondo State, Nigeria between June and December 2010.
- Proximate composition of agro-industrial wastes (Wheat bran, Rice bran, Saw dust and Palm kernel pericarp) were determined using the methods of A.O.A.C (2011).

Extraction of the enzyme

➢ The extraction was performed using solid state fermentation according to the method of Ibrahim *et al.* (2011).

Enzyme Assay:

The filtrates of the fungus was assayed for beta-amylase using the modified dinitrosalicylic acid (DNSA) reagent method (Bernfeld, 1955; Zhou et al., 2009).

Table 1: Proximate composition (%) of selected agro-industrial wastes before and after solid fermentation with *Trametes* species

SAMPLE		MOISTURE	ASH	FAT	FIBRE	PROTEIN	СНО
WHEAT BRAN	A	8.79±0.02ª	6.32±0.02 ^g	2.40±0.01 ^c	3.18±0.02 ^b	19.54±0.10 ^f	59.79±0.06 ^h
	В	11.43±0.02 ^d	1.64±0.03 ^c	1.54±0.03ª	1.98±0.01ª	26.61±0.03 ^h	56.81±0.11 ^g
RICE BRAN	A	8.54±0.03ª	4.49±0.02 ^f	5.20±0.02 ^e	20.19±0.01 ^d	13.49±0.09 ^d	48.09±0.10 ^f
	В	10.53±0.28°	1.91±0.01 ^d	2.13±0.02 ^b	18.88±0.01 ^c	22.54±0.02 ^g	44.01±0.32 ^e
SAW DUST	A	9.09±0.01 ^b	0.19±0.01 ^b	5.60±0.01 ^f	69.79±0.02 ^h	10.96±0.10ª	4.73±0.50 ^a
	В	12.83±0.01 ^f	0.14±0.02ª	3.23±0.00 ^d	67.03±0.03 ^g	12.54±0.02 ^b	7.24±0.07 ^b
PALMKERNE L PERICARP	А	12.37±0.03 ^e	14.16±0.02 ^h	8.11±0.02 ^h	45.03±0.02 ^f	12.85±0.01°	10.04±0.48°
	В	14.47±0.02 ^g	2.54±0.02 ^e	6.97±0.01 ^g	43.07±0.00 ^e	14.55±0.03 ^e	24.39±0.06 ^d

A: Sample before use (unfermented). B: Sample after use (fermented). Values are means of three replicates \pm SD. The statistical significance was evaluated using Student's t-test and value of p<0.05 was considered to indicate a significant difference between the fermented and unfermented wastes.

Key: CHO-CARBOHYDRATE

Figure 1: Time course profile of beta-amylase production by *Trametes* species in solid state fermentation using different substrates.

DISCUSSION

- Selected agro-industrial wastes were used for the production of Beta-amylase which was in line with the findings of Khandeparkar and Bhosle, (2008). They reported the use of agro-industrial wastes as substitutes for commercial known substrates for enzymes production.
- The biodegradation of wastes by associated enzymes was also reported in the research finding of Arotupin, (2007).

- ➤ The result obtained from the bioconversion process of selected wastes revealed the potential of beta-amylase produced by mushroom as a biotechnological tool for the transformation of wastes into biological products.
- ➤The enzyme sourced from this mushroom could be exploited as source of enzyme of industrial importance.

References

- Arotupin, D. J (1991). Studies on microorganisms associated with the degradation of sawdust. M. Sc. Thesis, University of Ilorin, Ilorin, Nigeria, Pp. 185
- Arotupin, D. J (2007). Evaluation of microorganisms from cassava waste water for production of amylase and cellulase. Res. J. Microbiol., 2: 475-480.
- AOAC, (2011). Official Methods of Analysis. 15th Edn., Association of Official Analytical Chemists, Washington, DC., USA., pp: 200-210.
- Khandeparkar, R. D. S and Bhosle, N. B (2008). Isolation, Purification and Characterization of the Xylanase Produced by Arthrobacter Sp MTCC 5214 When Grown in Solid State Fermentation. National Institute of Oceanography, Dona Paula-403004, Goa, India, PP: 5.

THANK YOU FOR LISTENING WITH RAPT ATTENTION